

Biological-plausible learning with a two compartment neuron model in recurrent neural networks universität

Timo Oess^{1,2}, Daniel Schmid² & Heiko Neumann² ¹ Applied Cognitive Psychology, University of Ulm, Germany ² Institute for Neural Information Processing, University of Ulm, Germany

Introduction

- Recurrent neural networks (RNNs) can provide models of human motor control system²
- Often backpropagation through time (BPTT) is used to train such networks
- Integration site of feedback signal is unclear

Methods

- 2-point leaky integrator (LI) neuron model with apical and basal and compartments⁵
- Sparse reward-modulated Hebbian weight update via node perturbations $\tau \dot{x}_{i}^{api} = -x_{i}^{api} + W^{in} \cdot y$
- RNN controls plant (dynamical system) via acceleration control commands
 - End of trial reward based on
 - difference between goal and plant end position
 - Perturbations applied to plant states

Results

Conclusion

 Successful integration of sensory feedback via apical dendrites • Combination of additive and multiplicative integration most reliable • Model scales easily to ore complicated 2D plant. Control signals are acceleration commands in x- and y-direction

Contact

timo.oess@uni-ulm.de https://oesst.github.io

References

Miconi T., *eLife*, 2017 Todorov et al., *Nature neuroscience 2002* ⁵Adeel et al. ² Sussillo et al. Current Opionion, 2014 ³ Larkum et al., *Nature*, 1999

optimality in terms of optimal feedback controller

- Center-out reaching task with different targets
- Minimum intervention principle

Acknowledgements:

Thanks to Prof. Carsten Mehring for valuable discussions and input.