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Sensory receptor surface for auditory inputs
is tonotopically organized.
Spatial location of a sound source derived
from computed binaural cues.
Association between cues and spatial
locations needs to be learned.
➜ Vision serves as a guidance signal

Aligning Auditory Maps of SpaceAligning Auditory Maps of Space

Adapted from Pena, J. L., & Gutfreund, Y. (2014) Current opinion in neurobiology 
Knudsen, Eric I., & Phyllis F. Knudsen. (1989) Journal of Neuroscience

2



Sensory receptor surface for auditory inputs
is tonotopically organized.
Spatial location of a sound source derived
from computed binaural cues.
Association between cues and spatial
locations needs to be learned.
➜ Vision serves as a guidance signal

Aligning Auditory Maps of SpaceAligning Auditory Maps of Space

Adapted from Pena, J. L., & Gutfreund, Y. (2014) Current opinion in neurobiology 
Knudsen, Eric I., & Phyllis F. Knudsen. (1989) Journal of Neuroscience

2



Conductance based neuron
population:
Randomly initiated connection
creation.
3-Component-Learning-Rule
[Gerstner2018]:

Model ImplementationModel Implementation

Gerstner et. al (2018) Frontiers in Neural Circuits 
Oja, E (1989) International Journal of Neural Systems

3



Conductance based neuron
population:
Randomly initiated connection
creation.
3-Component-Learning-Rule
[Gerstner2018]:

Stabilizer [Oja1989]: pulls weights
towards constant energy

Model ImplementationModel Implementation

Gerstner et. al (2018) Frontiers in Neural Circuits 
Oja, E (1989) International Journal of Neural Systems

3



Conductance based neuron
population:
Randomly initiated connection
creation.
3-Component-Learning-Rule
[Gerstner2018]:

Stabilizer [Oja1989]: pulls weights
towards constant energy
Eligibility: enables gradual
learning controlled by visiual
energy

Model ImplementationModel Implementation

Gerstner et. al (2018) Frontiers in Neural Circuits 
Oja, E (1989) International Journal of Neural Systems

3



Conductance based neuron
population:
Randomly initiated connection
creation.
3-Component-Learning-Rule
[Gerstner2018]:

Stabilizer [Oja1989]: pulls weights
towards constant energy
Eligibility: enables gradual
learning controlled by visiual
energy

Temporal Trace: improves learning
of temporally shi�ed signals

Model ImplementationModel Implementation

Gerstner et. al (2018) Frontiers in Neural Circuits 
Oja, E (1989) International Journal of Neural Systems

3



Conductance based neuron
population:
Randomly initiated connection
creation.
3-Component-Learning-Rule
[Gerstner2018]:

Stabilizer [Oja1989]: pulls weights
towards constant energy
Eligibility: enables gradual
learning controlled by visiual
energy

Temporal Trace: improves learning
of temporally shi�ed signals

Model ImplementationModel Implementation

Gerstner et. al (2018) Frontiers in Neural Circuits 
Oja, E (1989) International Journal of Neural Systems

3



Vision and audio inputs spatially aligned
Temporal coincidence of stimuli
Successful alignment of maps

Results - Default InputsResults - Default Inputs
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Visual input is prismatically shi�ed with different offsets (Rearing barn owls with a prismatic shi�
[Knudsen1989])
Auditory map alignment shi�s according to visual shi� (0 , 10 , 20 )

Results - Prismatic Shi� during rearingResults - Prismatic Shi� during rearing

∘ ∘ ∘

Knudsen, E. I. and Knudsen, P. F. (1989) Journal of Neuroscience
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“Incremental training increases the plasticity of the auditory space map in adult barn owls”
[Linkenhoker2002]
Single large prismatic (visual) shi� does not induce a shi� but unlearning. Shi� of auditory map
possible with incremental steps.

Results - Prismatic Shi� in Adult OwlsResults - Prismatic Shi� in Adult Owls

Single large shi� Incremental shi�s

Linkenhoker, B. A. and Knudsen, E. I. (2002) Nature
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Ability to shi� the alignment of the auditory map correlates with the receptive field size of the auditory
map neurons.

Receptive field size large at learning onset
Gradually shrinks until adult state is reached 

➜ Hypothesis: Relearning is only possible if shi�ed visual stimulus is still within receptive field of
auditory neuron

Results - Model PredictionResults - Model Prediction
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Visual and auditory inputs are temporally shi�ed
Stimulus locations are randomly chosen from a uniform distribution 
➜ Low autocorrelation of stimulus locations

Results - Temporally Shi�ed Inputs Results - Temporally Shi�ed Inputs (1/3)(1/3)
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Visual and auditory inputs are temporally shi�ed
Stimulus locations are randomly chosen from a Wiener process 
➜ High autocorrelation of stimulus locations

Results - Temporally Shi�ed Inputs Results - Temporally Shi�ed Inputs (2/3)(2/3)
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Quality of map alignment depends on spatio-temporal correlation of inputs.

Temporal coincidence is crucial for stimuli with low autocorrelation of stimulus locations
Highly autocorrelated stimulus locations lead to successful map alignment even for large temporal
offsets

➜ Learning depends on the spatial autocorrelation of the inputs

Results - Temporally Shi�ed Inputs Results - Temporally Shi�ed Inputs (3/3)(3/3)
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Ability of shi�ing auditory map in adult animals depends on the receptive field size of
auditory neurons.

Large Receptive Fields ➜ Large shi�s are possible
Small Receptive Fields ➜ Small, gradual shi�s are need

Spatial autocorrelation of inputs
Temporal offset between stimuli effects learning
Map alignment is still possible for highly autocorrelated inputs

Model allows flexible and stable map formation
Suitable for real-world application in mobile robots

ConclusionConclusion
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Thank youThank you
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Conductance based neuron population of ICx:

Randomly initiated connection creation.
3-Component-Learning-Rule [Gerstner2018]:

with:

 (auditory input)
Temporal Trace:

Eligibility (Controlled by Vision):

Stabilizer (leads to [Oja1989]):

Model Implementation - EquationsModel Implementation - Equations

τ = −α ⋅ + (β − ) ⋅ ⋅ṙj rj rj ∑N
j=0 wji sA

i

Δ = η ⋅ ((pos (t) ⋅ pr (t) ⋅ f (t) − sta (t))wji tj ei bj bj

pos (t) = (t)tj r̄j

pr (t) =ei sA
i

(t + δt) = (1 − λ) ⋅ (t) + λ ⋅ (t)r̄j r̄j rj

f (t) = (t) ⋅ E(t)bj s ̂ Vj

sta (t) = ⋅bj r̄2
j wji Gerstner et. al (2018) Frontiers in Neural Circuits 

Oja, E (1989) International Journal of Neural Systems
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